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Current research interests of my group

Quantum interferometry (Bose-condensed
atoms, ultracold trapped ions)

Cavity-QED with Bose condensed atoms

Non-equilibrium many-body quantum dynamics
(TEBD, quantum spin model, Bose-Hubbard
model, etc)

Theoretical studies of quantum technology with
ultracold atoms (high-precision measurements,
quantum simulation, atom clocks, etc)
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1. Introduction

“Natural measures of quantity, such as fathoms, cubits, inches, taken from the
proportion of the human body, were once in use with every nation,” taught Adam
Smith in his lecture "Money as the measure of value and medium of exchange,”
delivered in 1763. “But by a little observation,” he continued, “they found that one
man's arm was longer or shorter than another’s, and that one was not to be
compared with the other; and therefore wise men who attended to these things
would endeavour to fix upon some more accurate measure, that equal quantities
might be of equal values. Their method became absolutely necessary when people
came to deal in many commodities, and in great quantities of them (7).” Smith’s
comments and the rationale underpinning them became increasingly urgent toward
the end of the eighteenth century.

W. J. Ashworth, Metrology and the State: Science, Revenue, and Commerce,
Science 306, 1314 (2004)

Measurement standards defined by human body (old-time UK people)
or rice length (old-time Chinese people) are not accurate. They may
change case by case.



FUNDAMENTALS OF MEASUREMENT

1.1. Quantum Metrology SCIENCE VOL306 19 NOVEMBER2004 [l
Higher Standards ™ B
mass E

his special issue of Science looks at the development of precision measurement, how its tools Iength
have been developed and adapted for better performance, and how the standards used today
may be further improved. Historically, measurements were often based on somewhat arbitrary
local units. In his Viewpoint, Ashworth (p. 1314) describes, from a British perspective, the
development of a standardized metrology as applied to weights and measures and how the
burgeoning commerce of the industrial revolution drove its development.

Quantum-Enhanced Measurements: Beating the Standard Quantum Limit
V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004)

Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits
on the precision of measurement. Conventional measurement techniques typically
fail to reach these limits. Conventional bounds to the precision of measurements
such as the shot noise limit or the standard quantum limit are not as fundamental as
the Heisenberg limits and can be beaten using quantum strategies that employ
"quantum tricks” such as squeezing and entanglement.




Mach-Zehnder interferometry

A
>

All

a=(a+ib)N2

/ b'=(ia+b)/V2

Ap




F=4
(1)prepare an initial state |1>; - F=3
pumpgr Deam

Ramsey interferometers :

(2)apply the first half-Pi pulse to
create an equal superposition “ﬂ@
of |[1> and [2>;

=

(3)accumulate a relative phase
between |1> and |2> in the 6
free evolution;

(4)recombine |1> and |2> via the Pue
second half-Pi pulse; 2 )
w2 I{
(5)detect the final state. REoht e #‘“

Atom Interferometry,
edited by P. Berman (Academic Press, San Diego, 1997)



Ramsey interferometry via independent particles
(general phase measurement)

a) +16) ——— la)+€Ib) || la)+1)? )—<yes

no

_ yes
o) +16) —— 1w+ |+ DH—

no

a) +16) ——B— o)+ €¥Ib) || la) + 1)? )—<yes

no

#yes (in n repetitions) ~ T-cosg

P n ] 2

Wineland et al., Spin squeezing and reduced quantum noise in
spectroscopy. Phys. Rev. A 46, R6797-R6800 (1992).

Braunstein, Quantum limits on precision measurements of phase.
Phys. Rev. Lett. 69, 3598-3601 (1992).




Frequency measurement via independent particles
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standard quantum limit
(shot noise limit)



Ramsey interferometry via cat state (NOON state)
(general phase measurement)

_ yes
ja) + )" )" + ™) || |y + b)Y >—<
no

#yes (in v repetitions) ~ 1-cosNp
Y 2

pent B

Wineland et al., Spin squeezing and reduced quantum noise in
spectroscopy. Phys. Rev. A 46, R6797-R6800 (1992).

Braunstein, Quantum limits on precision measurements of phase.
Phys. Rev. Lett. 69, 3598-3601 (1992).




Frequency measurement via cat state (NOON state)

Cot stote
l e BmE(NuiT/2)
M “olems T & -uNET/ 2 IS s
. = —r'-hl—'l‘- = A .
1.7 w!t-D ; (o) *5“ N - LSmNST/R)D D = 3 (- emsNGT)
Fay w7 Jlt- i -
/\'._. 8D on el n.-h-ns._;g .. ; + eon(NaT R [J3T..0 }? r.;-_na"":""l:-:-T;'l-’-'-:l
Lo NaT
Rylw2) o Forst abowm C-NOT e vest g(tv s
 Cat-state preparation and read-out require Fringe pattern
distinguishing all atoms. with period 21/N

* How about indistinguishable systems? (BEC)

(signal) = (o0,) = —cos NwT
(noise) = Ao, = V1 — cos?NwT = | sin NwT|
|1 (noise) _ 111 . .
A(WT) = oliaGignana@n) T EIN Heisenberg limit

v = (number of trials) N cat-state atoms




1.2. Interferometry with Bose condensed atoms

Michelson interferometers

(1) The BEC is split at t=0 into two momentum
components = 2kL using a double pulse of a
standing light wave.

(2) A Bragg scattering pulse at t=T/2 then
reverses the momentum of the atoms and the
wave packets propagate back.

(3) At t=T the split wave packets overlap and a
third recombining double pulse completes the
interferometer.

To apply a phase shift between the two paths,
a magnetic field gradient was turned on for a
short time while the atom clouds were

3
LA i L, 3 & 10

Separated. bagnetic ;_'laldi-.'|;[|l-l.|n:

Wang et al., 2005, “An atom Michelson interferometer on a chip using
a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405.



Double-well interferometers

(1) Preparation: a single BEC coherently splits into two by
increasing the potential barrier.

(2) Phase shift: an interaction may be used to induce the phase
shift between two BECs.

(3) Interference: the split BECs in the two wells are recombined to
observe the interference.

(I) Optical potentials (optical trap + laser barrier)
Shin et al., 2004, “Atom interferometry with Bose-Einstein
condensates in a double-well potential,” Phys. Rev. Lett. 92, 050405.

(II) Magnetic potentials (atom chips)
Schumm et al, 2005, “Matter-wave interferometry in a double well on
an atom chip,” Nature Phys. 1, 57.



(I) Optical potentials
(optical trap + laser barrier)

a) . £
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Ramsey interferometers with two-component systems

-~

F=2

F=1

-

N
\b> o

&)

_.&.9.|a>

M&e 2

/e

_Miedé |
JILA,
LENS,
ANU,
Heidelberg Uni.,
SUT,
etc.




Potential Applications

(1) High-precision quantum frequency
standards (atom clocks) 12>

Atomic transitions are very useful to measure
time or frequency with very high accuracy that

the definition of a second is based on them. probe laser
Starting with a system of N non-interacting

atoms in the ground state |0>, an 11>
electromagnetic pulse is applied to create coupling laser
equal superposition of |0> and of an excited 10>

state |1> for each atom.

A subsequent free evolution of the atoms for a

time t introduces a phase factor between the |
two states, wt, where w is the frequency of the

transition between |0> and |1>.

w—Aw (
!
At the end of the free evolution, a second / wtha
electromagnetic pulse is applied and then the \ y, /

signal

probability for the final state in |0> (Ramsey 7y

ﬁquency

interferometry) is measured.



(2) High-precision measurements of physical constants

Gravimeters (gravity), ¢=(G-9)7+2G-(Q X5)7,
gryroscopes (rotation), and
gradiometers

Batom B me” B hph c 1010

Newton’s constant G = =
ﬁi‘f’ugm ho  ANggv

Tests of relativity

Interferometers in orbit (GPS)

Fine structure constant and
h/M

Cronin, Schmiedmayer, Pritchard, Rev. Mod. Phys. 81, 1051 (2009)



2. Matter-wave interferometry

2.1. Atomic matter-wave interference

80 -

v (a) Initial state ' ’

-20 -10 o 10 20
Coherent beam splitting



Interference of two freely expanding condensates



2.2. Nonlinear excitations

(a) Linear system, A = 0

R RN .. W

-t

—  — -

0 5 10 15 20
Time

Nonlinear excitations in 1D matter-wave interference



2.3. Bose-Josephson junction (BJJ)

@

\_ " coupling

Schematic diagrams for Bose-Josephson junctions:

(a) an external Bose-Josephson junction linked by quantum
tunneling, and

(b) an internal Bose-Josephson junction via a two-
component BEC linked by Raman fields.



Unified MF model for both external and internal BJJs

A E e e
H = 5 (ng —n1) + — (ng — ?1-..1)2 — J (VThs + 03y,
with n; = ¥, = 07,

0 =co—c1+ N (Usx—Uyy) /4,

E. = Uy, + Uy for external BJJs

E. = Uy + Uy, — 2U,5 for internal ones.
, d“i-;";*l (5 , Ec S92 2 , .
th—— = — = — (|7 — [ by — Jhg,
ih— S+ ([al” = [v2l™) vy = Jebo,
- dig Y ,. E. L2 2y ,.
ih—= =45t + - (J1a]® = [101]7) 2 — Jeby.




Rabi oscillation and macroscopic quantum self-trapping (MQST)

1

05
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Linear systems, Ec=0




Experimental observation of MQST

el 1

Sur[dnoos 'sA uoroeIdul O1jeI

classical non -rigid pendulum

2 N
H = ym’ —Q\/(Zj —m? cos(@) ~ o

Theory:
Smerzi et al, PRL 79, 4950 (1997) !

Experiment: Oberthaler et al., PRL 95,010402 (2005); PRL 105, 204101 (2010)




Shapiro resonance and chaos
(a) 5, = 0.001 (b) 5, =1/3

Poincare sections for a BJJ with a driving
O(t) = &1 cos (27t).



Symmetry-breaking transition

1.0

051

0.0

Equalphasa mode

0.5

-1.0

S T —— ho 0 50 40 30
§ Q/(2y)

Theory: Lee et al., PRA 69, 033611 (2004); Lee, PRL 102, 070401 (2009); etc.
Experiment: Oberthaler et al., PRL 105, 204101 (2010).



Universal dynamics near critical point

Two characteristic time scales for slow dynsmics across the crtical point,

(1) reaction time (how fast the system follows its ground state),

. =h/A, (1)
(2) transition time (how fast the system is driven),
dA (1)
7. =A_(1)/—=2
t g( ) dl’ .

The excitation gap over the ground state

JIQHQ+E L) for [hQ/E.|>L

A (1) =

J(ELY —(7Q)* for |nQ/E.|<L
where, L=N/2,E. =2y (gll T 8» _2g12)

T <7, adiabatic evolution — .
r t critical point

T > 7, non - adiabatic evolution (t=0)




Kibble-Zurek scalings near critical point

r N e N
Tr(ﬂ — T:(r) ‘ |f| ~ Ty Tq

slow transitions, 7, > | _—2/3_-2/3

g q Y, & "7y Tq

I

(" Kibble-Zurek scalin gs )

~ 1/(14- 7 14~
|f| MT[}/( ,J))T&Uf( zv)

—1/(1+z —1/(1+z
= | e~ vt

\Withz = land v = '1/2)

(B)]

Q)= Q1 =1/7,) = Q. £ B
e = |[Q0) — Q.10 = l1l/7,
70 = 1/Q,

(c)-
o Lee, PRL 102, 070401 (2009)




3. Many-body quantum interferometry

Q

H/h =—E(a2+a1 +a1+a2)+?C(n2 —”1)2 +

E

°
2

(nz—nl):—g-j+ZJ22

Ground states for symmetric systems, H /7 =-CQJ + yJ’

1

Regime x/Q[>>1 2/9]~0 x/Q[>>1
y>0 x <0
+ +\V
State form (ar)N/z(a;)NQM (al +a2) ‘0> ((af)N +(a2+)N)O>
(N/2)! V2N 212 N
Coherent matrix N 10 N 1 N 10
(a/a,) 210 1 2\1 1 210 1
Fluctuations AN, ~0 AN, ~ JN AN, ~ N




Resonant tunneling and interaction blockade in asymmetric systems

olz L] L)
e @
—
- Fd
= o
== 01 !
=
| Il
< f I 1, ] i i i b | 1
i ||'l '|| :I. r|-‘ JII ! I"I (l
i I [} f i
PO [N (R L vod ) L]
0 L ey - S - o oA N
5 T

N=10,E =10, and
E-:' 1000 (solid lines), or

E-:' 100 (dash lines), or
Ec= 10 (dash-dot lines).

3 4 2

Theory Experiment

C. Lee, L.-B. Fu, and Yu. S. Kivshar, P. Cheinet, 1. Bloch, et al.,
EPL 81, 60006 (2008); Carr et al., ... Phys. Rev. Lett. 101, 090404 (2008)




3.1. Quantum spin squeezing and many-particle entanglement

Quantum spin squeezing

Squeezing parameter based on the Heisenberg uncertainty relation
Ja, Js] = i2apyJy. 244 is the Levi-Civita symbol.
The uncertainty relation is (AJQ)2 (AJg)Q > \(J.ﬂ{..)|2 /4
2 (AJ.)°

2 = AT a #£ v € (x,y,2),squeezing parameter

if Sir < 1, the state is squeezed.

Squeezing parameter £ given by Kitagawa and Ueda
. 2 . 2
min (AJﬁL) ~ 4min (AJEL)
7/2 N ’
1, refers to an axis perpendicular to the MSD ( f)
the mean-spin direction (MSD) 7y =

2 _
S T

()

the minimization is over all directions
Jian Ma, Xiaoguang Wang, C. P. Sun, and Franco Nori, arXiv:1011.2978




Squeezing parameter S?Q quven by Wineland et al.

Ao\ N(AJz,)

¢k = : = -
(A‘;‘-))CSS ‘ <f>

(a) Coherent spin state (b) Spin squeezed state rotate the state around the z-axis.
AJy 1 &R . N
= Zp Ab=—— JO — exp(iod VT, exp(—id.
AN Lf N v p(ioJy) Sy exp(—igJ;)
| : = cos ¢.J, — sinoJ,

the phase sensitivity Ao

L A_jgc}ut B AJ;LW
O{Iy™) lcos o(.J.)]
Binomial distribution Sub-binomial distribution
03 : 03 standard quantum limit (SQL)

(SSSlj,m)y[?

0.2 (AD) s = “', \/12_ \/1_
J J

0.2

(CSS|j,m)y[?

0.1 0.1

' "‘.‘\ gé f—
"o 0 10 10 0 10

m m




Preparing spin squeezing by nonlinear interactions

(a) (c)

ne-axis twistind can reduce the noise down tothe order of S 17?

. State evolutions by one-axis twisting in terms of
iprobability distribution (QPD) on the sphere for
S = 20.\The densities of the figures are normalized by the
maximum\yvalue Qmax of Q(&,¢). (a) shows the initial co-
herent spin gtate |8=3%, ¢=0) (Qmax = 1). (b) and (c) show
one-axis twisted states generated by the unitary transforma-
tion & = exp[—iuS; /27 b) optimally squeezed at u = 0.199
(Qmax = 0.445) and (c) excessively twisted at p = 0.399
(Qmax = 0.241). Although not clear from the figure, the
QPD of (¢) deviates from a geodesic (swirliness).




Spin squeezing and entanglement

A symmetric state is entangled if and only if it violates the inequality,

Al

4(AT;)? s
TE (4\7) <):>£§7:

N(ATz) _ N@J,»

NW4—u@f7hj+UQ”31

(a) Uncorrelated spins

- - ~
p i 0
/ [ )
! \
I e
.
| ]
\ @ o
AN
~
~
~ -

Coherent spin state

A

Many-particle entanglement with
Bose-Einstein condensates

A. Sgrensen*, L.-M. Duanf, J. I. Giract & P. Zollerf

* Institute of Physics and Astronomy, University of Aarhus, DK-8000 Arhus C,
Denmark

T Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck,
Austria

NATURE | VOL 409| 4 JANUARY 2001 | www.nature.com

S. Raghavan, H. Pu, P. Meystre, and N. Bigelow,

Generation of arbitrary Dicke states in spinor
Bose-Einstein condensates,

Opt. Commun. 188, 149 (2001)



3.2. High-precision interferometry via spin squeezed states

__Ramsey interferometry on the Bloch sphere

— W S
\ &2 | VA j (7.3

input state after first after evolufion after second

7 /2 pulse time = /2 pulse
N - readout -
<J Z> = —CO0S ¢, :
2 &, =1, spin coherent state
(8<JZ>/5¢) _ E, &, <1, spin squeezed state |
a2 Dependent on &,, A(g)achieves from
N standard quantum Lmit, Heisenber g limit,

N
A(JZ ) —_- é:R ’ . o e
2 to super - Heisenberg hmiut.

[A(¢) = P <§f§; 2¢ = j%} — phase sensitivity




Fast diabatic spin squeezing by one axis twisting evolution
H/h =y ]:f + 2], + AwyJ,, where ], = J,cosy + J,s1in 7y (Kitagawa, Ueda)

natuare Vol 464|22 April 2010|doi:10.1038/nature08988

LETTERS

strong nonlinearity via controlling spatial overlap

Atom-chip-based generation of entanglement for
quantum metrology

Max F. Riedel', Pascal Bohi'*, Yun Li**, Theodor W. Hansch ', Alice Sinatra” & Philipp Treutlein"*”

Vol 46422 April 2010| doi:10.1038/nature08919 nature

LETTERS

strong nonlinearity via using Feshbach resonance

Nonlinear atom interferometer surpasses classical
precision limit

C. Gross', T. Zibold', E. Nicklas', J. Esteve't & M. K. Oberthaler’




Twin Matter Waves for Interferometry Beyond the Classical Limit
B. Licke, et al.

Science 334 773 ( 2{]1‘1%

DOI: 10.1126/science.1208798

pair-correlated states from spin dynamics

Interferometers with atomic ensembles are an integral part of modern precision metrology.
However, these interferometers are fundamentally restricted by the shot noise limit, which can
only be overcome by creating quantum entanglement among the atoms. We used spin dynamics
in Bose-Einstein condensates to create large ensembles of up to 10" pair-correlated atoms with
an interferometric sensitivity —1. 61*"‘:' “denhel_r. beyond the shot noise limit. Our proof-of-principle
results point the way toward a new generatmn of atom interferometers.

A '“'rI E
- i - 1
o I::I :EH .a I::I E
N T l ,___:H

SR i - -1
Probability Probability



3.3. High-precision interferometry via NOON states

H/h:g(nl_nz)_%(a;al+a1+az)+%(n1_n2)2 =), ~QJ + )

z

Fockbasis:‘NOON> :%in =N,n, = O>+‘n1 =0,n, = N>)
spin basis : ‘NOON> :\/IE(J = g,JZ = —%>+‘J zg,JZ = +I;>]

The NOON state is a ground state for system of 6 =0, y < 0and ‘Q/ Z‘ <<1

Adiabatic preparation of NOON state via dynamical bifurcation

- .
s ‘¥_m y -
70 -60 50 -40 -30

Q/(2x) C. Lee, PRL 97, 150402 (2006)



Beam splitting and recombination via dynamical bifurcation

(a) ()

0.16
M- 0.5 =
z Q=40 Q=0
=
T (.08 i - 7
E .25
i il
=10 =5 ] 5 10 =10 -5 o 5 10
B [
() (d]
ir-r——=—"— R
! :
N i
E 051 —— F1 ]
LT | F|:|+F1 I
|
ol = - — ..
A 30 20 10 0

Q

Forasystemof 0 =0and y <0,if Q=40—->Q =0,

GS) =|CS),,,,, — |NOON) = (|P1)+|P2))/2.

Here, |P1)=|J = N/2,M = —N/2)and |P2) = |J = N/2,M = +N/2) are

the ground and first - excited states for the systemof Q=0and 0 < o < ‘ 4

b

respectively. They can be used as two paths of a MZ interferometer.



Phase accumulation via the term of 0Jz

Switch on the term oJ | for a period of time T,

1 (6-16T~(N/2)‘P1> + e+i6T-(N/2)‘P2>)

A

with @ = ST, which is the phase accumulated in a single - atom system.

NOON)

Extract the relative phase from the population information via a
dynamical bifurcation from |Q/y<<1 to |Q/y|>>1

Due to the indistinguishability, we can not use the proposals of Wineland et al.
and Caves et al.

At the side of ‘Q/ ;(‘ << 1,the ground [first excited] states will be
q P1> + ‘ P2>/«/§) [q P1> — ‘ P2>)/«/5] even for a very small Q.

Therefore, the state after the dynamical bifurcation becomes
cos(Ngo/2){ GS> —1i- sin(Ngo/2)‘ FS>,

(1+cos(Ng))/2
(1-cos(Ng))/2.

whose populations are P = cos’(N¢/2)
and P, =sin*(Ng/2)



Schematic diagram for MZ interferometry via NOON states
of indistinguishable systems

Hamiltonia n, H/h=&_ - QJ _+ yJ?

Detect
Input : :

N N
— ,+ i
272/

P1)+[P2) o2 |P1)4e 2 |p2)

-

S SU2) \/5 \/5
= COS(%)‘GS> —1- sin(%j‘ FS> = cos(%j‘ P1> —1- sin(N(DJ‘ P2>

2




Keynotes

e negative nonlineari ty (¥ < 0) — Feshbach resonance
e coupling — tunnelling (double - well system), or
Raman transitio n (two - component condensate )
e two paths — two degenerate d ground states for the system of y <0
e beam splitting/ recombimat i1on — dynamical bifurcatio n

e path entangled state (NOON state) — dynamical bifurcatio n

Advantages

 large total number of particle (in order of 103, 10 for systems of photons
and trapped ions)

» reduced influence of environment (adiabatic evolution and closed sub-
Hilbert space)

* measurement precision of Heisenberg limit (path entangled states)

« experimental possibility (double-well or two-component systems)
Challenge

« adiabatic evolution requests long coherent time

C. Lee, PRL 97, 150402 (2006)



4. Summary and open problems

Summary

* In interferometers of Bose condensed atoms, the atom-atom
interaction brings the nonlinearity to the system.

« Tuning the effective nonlinearity, symmetry-breaking transitions
appear and the dynamics near the critical point obey the universal
Kibble-Zurek mechanism.

* The spin squeezed states and NOON state can be prepared by
controlling the nonlinearity and these states can used for high-
precision interferometry beyond the standard quantum limit.

Open Problems

- noises (quantum fluctuations and technical noises)

- imperfect effects (atom loss and environment)

- coupling between internal and external degrees of freedom
- finite-temperature effects

More details in, C. Lee, et al., arXiv:1110.4734v3 (a review article)
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attention!

International senior scientist (1000-
talent program, our university) and
postdoctoral positions available (my

group)!
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